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Abstract. History and development of the tangent modulus from the origins to the recent nonsmooth
damaging versions are presented. Load history and stability analyses of structures of nonlinear revers-
ible or irreversible materials are based on the concept of tangent modulus. Generally, instantaneously
changing tangent modulus is needed and the solution yields iteration process. In the case of inelastic
problems, the switch from loading to unloading of the material behaviour results in nonsmooth
material functions. Nonsmooth, generally saw-tooth like behaviour happens in composite, laminated
or rock type materials, or in the interaction of concrete and the reinforcement, too. Recently, damage
and localization are in the focus of structural analyses, extending the tangent modulus to the negative
cases, as well. Consequently, an overview of the history and development of the tangent modulus
containing the recent modifications seems to be necessary. On the other hand, the more than a
century long history of the tangent modulus is a marvellous study of the parallel development of
mechanics and mathematics, by following the mutual inspiring effect of them through the activity of
such pioneers like P.D. Panagiotopoulos in creating Nonsmooth Mechanics.
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1. Introduction

The classical elastic load history and stability analyses are based on the convex and
smooth elastic potential. The nearly also classical elastic-plastic analyses need also
smooth and convex potential by reducing the problem to a quasi-elastic analysis.
The modern inelastic stability analyses including strain softening and damage are
extended to nonconvex potentials by the generalization of the tangent modulus.
However, the condition of smoothness is further on required by using the concept
of linear comparison solid.

The nonsmooth characteristics of strain energy functionals can be derived from
two facts. On one hand, it can be caused by the change of material phases: the
switch from loading to unloading is an original nonsmooth characteristics of any
inelastic behaviour. Even to avoid nonsmoothness, the concept of linear compar-
ison solid has been introduced by Hill (1958). On the other hand, the nonsmooth
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properties of strain energy can be resulted by nonsmooth functions of material laws
directly, due to original or approximate polygon like characteristics.

By using the tools of nonsmooth analysis, we can get over the difficulties of
nonsmoothness of both type. By the help of thenonsmooth tangent modulus, global
load history or stability analyses of nonlinearly elastic or inelastic structures can
be investigated.

In this paper the development and modifications of the tangent modulus is
presented. Analytical and numerical aspects and application of the nonsmooth
versions are considered.

2. The history of the tangent modulus

Since the tangent modulus plays a key role in structural analyses, it seems to be
necessary to overview the development of it. Thus we can see how the tangent
modulus changed during about one and a half century, from a simple material
constant to an indicator tensor of dissipative systems. In the history of the tangent
modulus we follow the state of art given by Bruhns in (1984).

2.1. THE BIRTH OF THE TANGENT MODULUS

The concept of tangent modulus is resulted by the development of plasticity, namely,
the plastic bifurcation problems. Plastic column buckling, the possible bifurcation
of the structure was in the focus of interest in the past, however, the progress in the
subject was not smooth.

The problem to calculate the critical value of the load on the top of the column,
when the straight configuration becomes unstable, was first solved by Euler in
1744, by assuming linear elastic material. However if the stress in the column
exceeds the yield limit, plastic flow will occur, and the original elastic modulus
is not valid any more.

A typical stress-strain curveσ = σ (ε) can be seen in Figure 1a where the slope

Et = dσ/dε (1)

of the curve beyond the elastic limitσ0 is the tangent modulus. The tangent mod-
ulus is still the function of strains, sinceEt(ε) = dσ (ε)/dε, thus for the stress-
strain function, a bilinear idealization seen in Figure 1b is often used. This model
seems to be advantageous sinceEt = const , however, the nonsmoothness inσ (ε),
namely, the jump in the slope passing through the yield limit, causes difficulties.

The first revised formula for the critical load was suggested by Engesser in
1889 by using the tangent modulusEt in the formula of Euler. A bit later, in
1891 by Considére and in 1894 by Jasinski, an important observation was made
by pointing out that in a buckling mode, in one part of the section a purely elastic
strain reversal will occur, while in the remaining part, plastic loading will continue.
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Considére introduced the so-called reduced modulusEr for whichE > Er > Et .
Some examples were performed later by Kármán in 1910.

Then, for a long period, the reduced modulus theory was accepted in the subject,
until in 1946-47 a considerable progress has been investigated by Shanley.

Shanley (1946), by the help of a simple model demonstrated the important dis-
tinction between uniqueness and stability. He recognised that the tangent modulus
load is the lowest possible bifurcation load. At this load, the straight configuration
loses its uniqueness but not its stability. Moreover, Shanley has written the tangent
modulus in the form in which it is used in our time, too, as

δσ =
{
E δε for elastic loading or elastic–plastic unloading

Et δε for plastic loading
(2)

By an other important observation of Shanley that at the instant of bifurcation there
is no change in the load, Shanley quasi made an advance of the grounds of the
concept of linear comparison solid of Hill. However, it took another decade until
the continuum theory of bifurcation was laid down by the fundamental paper of
Hill in 1958.

2.2. EXTENSION OF THE TANGENT MODULUS TO THE CONTINUUM THEORY

Until the famous paper of Hill in 1958, the tangent modulus was considered as the
property of a material point only. Hill was who extended the concept of the tangent
modulus to the whole body or structure by characterising the ‘resistance’ of the
body by the tangent modulus (1962, 1967, 1978).

By following Bruhns (1984), here we refer only to those results of Hill which
are in closed connection with the tangent modulus. Hill suggested for the rate
constitutive relations of bodies with elastic-plastic material and finite deformations
as follows

σ̇ = Eε̇ − α
h
(λε̇)λ = σ̇ (ε̇), (3)

in the case of smooth yield surface and associated plastic deformations. Hereσ̇ is
the tensor of the so-called objective stress increments andE is the tensor of the
instantaneous elastic moduli whileλ represents the normals to the yield hypersur-
face interfaces separating the domains of elastic and plastic behaviour. Hereα is a
positive function of hardening as follows

α =
{

1 if λε̇ > 0

0 if λε̇ < 0
(4)

as an indicator of the regimes of plastic loading and unloading. When the stress
lies within the yield surface, the material is purely elastic thusα = 0.
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On the basis of Hill’s tangent modulus, a strain rate potential

W(ε̇) = 1

2
ε̇Eε̇ − 1

2

α

h
(λε̇)2 = We(ε̇)+Wp(ε̇, α) (5)

can be introduced as the potential function of the stress rates

σ̇ = ∂W(ε̇)

∂ε̇
= Eε̇ − α

h
λε̇λ. (6)

However, this function is nonsmooth with respect to the strain rates. It has
continuous first derivative and partly continuous second derivative. The jump in
the second derivative is due to the jump in the indicatorα. Without using the tools
of nonsmooth analysis the nonsmooth potential function (5) cannot be handled.

Based on the observation of Shanley according to which in column buckling
at the instant of bifurcation unloading is absent, Hill introduces a special ma-
terial called linear comparison solidof the nonlinearly inelastic material with
the property that unloading is excluded throughα=1. Thus, he could avoid the
nonsmoothness by obtaining a smooth potential

W(ε̇) = 1

2
ε̇Eε̇ − 1

2h
(λε̇)2 = We(ε̇)+Wp(ε̇). (7)

Hill’s results have a great importance. Any solution of the rate boundary value
problem for the elastic-plastic solid is unique when the uniqueness of the analogous
boundary value problem for the comparison solid is assured.

Hill’s results are related to elastic-plastic behaviour. However, in modern sta-
bility analyses the strain softening and damage, moreover, the strain localization
became even more important. Thus, the results of Hill have recently been exten-
ded to these cases, on the basis of the thermodynamics and by using the tools of
functional analysis.

2.3. THERMODYNAMIC GENERALIZATION OF THE TANGENT MODULUS

The thermodynamic extension of the tangent modulus is the merit of Nguyen
(1990, 1993), Halphen and Nguyen (1975) by introducing thegeneralized time-
independent standard dissipative material. This concept is the basis of the modern
bifurcation theories. General constitutive relations of strain softening materials
are given by the authors Rice (1971, 1976), Rice and Rudnicki (1980), Raniecki
and Bruhns (1981). Modern mathematical description is given by Benallal, Billar-
don and Geymonat (1989), Billardon and Doghri (1989), Benallal, Billardon and
Geymonat (1993).

Assuming small isothermal strains according to Benallal, Billardon and Gey-
monat (1989, 1993), the behaviour ofgeneralized time-independent standard dis-
sipative materialscan be characterised by three thermodynamical potential func-
tions, thefree energy9 = 9(ε, α, T ), thereversibility functionf (A, α, T ) and the
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dissipation functionF(A, α̇, T ), all expressed in term of the strainsε, the internal
kinematical variablesα, and the temperatureT.

Generally thefree energy

9 = 9(ε, α, T ) (8)

is the potential function of the statical type thermodynamic state variables, the
stressesσ , the thermodynamic forcesA, and the entropysas follows

σ = ρ ∂9
∂ε
, A = −ρ ∂9

∂α
, s = −ρ ∂9

∂T
. (9)

Thereversibility is governed by thefunctionf (A, α, T ) specifying thedomain
of reversibility

C(α) = {A|f (A, α, T ) 6 0}. (10)

Thedissipation functionF(A, α̇, T ) yields the normality law

α̇ = λ∂F
∂A
= Nc(a), (11)

whereNc(a) is the outer normal vector of the convex setC(α) atA. The nonnegat-
ive multiplierλ > 0 results from theconsistency conditioṅf = 0:

λ =<
∂f

∂A
◦3 : ε̇
h

>, (12)

where

h = ∂f

∂A
◦5 ◦ ∂F

∂A
− ∂F
∂α
◦ ∂F
∂A

> 0, (13)

moreover,

3 = −ρ ∂
29

∂α∂ε
, 5 = ρ ∂

29

∂α∂α
. (14)

Here the symbol◦ denotes the scalar product while⊗ denotes the tensorial product
between tensors. Symbol : denotes the double tensor contraction, and< x >=
max< x,0> ensures the nonnegativity.

Consideringisothermalprocess, thetime-independent standard dissipative ma-
terial can be characterised by three simplified potential functions9(ε, α), f (A, α)
andF(A, α̇). In this case the temperature and the entropy can be eliminated, thus,
the thermodynamic state laws (9) yield

σ = ρ ∂9
∂ε
, A = −ρ ∂9

∂α
. (15)
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By the help of these functions the general thermodynamic form of the tangent
modulus can be obtained. Taking the time derivativeσ̇ = ∂σ/∂t as quasi-static
velocity into account, the rate constitutive relation can be written in the form

σ̇ = L (ε, α) : ε̇, (16)

where the operatorL is the tangent modulus as follows

L =
{

E if f (A, α) = 0 and b: E : ε̇ < 0

E− (E:a)⊗(b:E)
h

if f (A, α) = 0 andb : E : ε̇ > 0′
(17)

in which

E = ρ ∂
29

∂ε∂ε
(18)

is the tensor of elastic moduli, and the tensors

a= E−1 : 3T ◦ ∂F
∂A

and b = ∂f

∂A
◦3 : E−1 (19)

are related to the law of normality and the domain of reversibility.
The general form (17) of the tangent modulus contains equally any nonlinear

inelastic and even strain softening or damaging characteristics of materials. Let us
consider now the most important special cases.

In the case ofelastic-plastic materials, function9 is the Helmholtz free energy.
According to Benallal, Billardon and Geymonat (1989), for elastic-plastic materi-
alswith non-associated flow law, f is the yield function andF is the plastic potential
function, consequently, tensorsa andb are the gradients of the plastic potential and
the yield surface, respectively. Thus, the tangent modulus is modified to

L =
{

E if f (A, α) = 0 and b: E : ε̇ < 0

E− (E:a)⊗(b:E)
H+a:E:b if f (A, α) = 0 and b: E : ε̇ > 0

(20)

whereH is the generalized strain-hardening modulus being positive, zero or neg-
ative for strain hardening, perfect or strain softening plasticity, respectively, see
Neilsen and Schreyer (1993). Forassociated flow law, evenf = F , that isa=b,
consequently, the tangent modulus (17) is simplified to

L =
{

E if f (A, α) = 0 anda : E : ε̇ < 0

E− (E:a)⊗(a:E)
H+a:E:a if f (A, α) = 0 anda : E : ε̇ > 0

(21)

Moreover, in the case oflinearly elastic and perfectly plastic materials, a=b=1 and
∂f/∂α = 0, consequently, the tangent modulus yields

L =
{

E for elastic loading, elastic–plastic unloading

0 for plastic loading
(22)
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In the case ofdamaging materials, a scalar damage coefficientD is introduced
among the internal variables. According to, forelastic-damaging materials,let
D be 06 D 6 Dcr 6 +∞, fulfilling the basic condition that forD = 0, the
material is perfectly elastic, and forD = Dcr , the material is perfectly damaged.
The stiffness of the material is characterised by a functiong(D)E whereE is the
initial elastic modulus. Thus, by means of these functions a rate constitutive law
of the damaging material can be obtained detailed in Benallal, Billardon and Gey-
monat (1993). For a very simple model of theelastic-damaging material, Benallal,
Billardon and Geymonat (1989) suggest 06 D 6 1 and the free energy to be
ρ9(ε,D) = 1

2(1− D)ε : E : ε, moreover,k(D) = Qo +MD whereQo andM
are material constants. Thus they suggest the tangent modulus to be as

L = (1−D)E− (E : ε)⊗ (ε : E)
M

(23)

for the elastic-damaging material.
Other tangent moduli are obtained for continuum damage material on the basis

of fracture mechanics by Janson and Hult (1977) and Del Piero and Sampaio
(1989).

2.4. EXTENSION OF THE TANGENT MODULUS TO LOCALIZATION

Recently, the phenomenon of localization, namely if the damage or strong strain
softening is localized into a small, quasi a zero volume of the body, is in the focus
of the research. As we have seen, by considering elasto-plastic material with non-
associated flow law, the tangent modulus is modified to (20), where the part

Dep = E− (E : a)⊗ (b : E)
H + a : E : b (24)

is the elasto-plastic tangent modulus tensor. If the plastification leads to strain
softening localized into a small part of the body, the tangent modulus needs certain
modification.

Based on the results of the analysis of the shear band localization (see the refer-
ences in the state of art by Neilsen and Schreyer (1993), and by Szabó (1998)), the
modified tangent modulus yields the second orderacoustic or localization tensor
specified by

Q = n · Dep · n, (25)

wheren is the normal vector of the surface of localized deformations or discon-
tinuity, separating the zone of localized deformations from the rest of the body.
The acoustic tensorQ and the normal vectorn is used as the basis of classification
of the bifurcation modes, that is for distinguishing the diffuse (nonlocalized) and
discontinuous (localized) bifurcation forms.
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3. The nonsmooth tangent modulus

After the short review of the tangent modulus, we focus ourselves to the nonsmooth
characteristics of it. Before detailing the consequences of the nonsmooth material
behaviour, the short history of the nonsmooth potential theory is considered.

3.1. DEVELOPMENT OF THE NONSMOOTH POTENTIAL THEORY

For conservative mechanical systems the stability conclusions can be drawn simply
from the properties of the total potential energy functional, by theLagrange–
Dirichlet theorem Thompson and Hunt (1973, 1984). The fundamental stability
statements are based on the classical potential law

σ (ε) = ∂W(ε)

∂ε
(26)

where functionalW(ε) is the smooth and convex strain energy density,σ = {σij }
andε = {εij } are the stress and strain tensors, respectively.

If the functionalW(ε) is nonsmooth but the material is reversible, the classical
potential law (26) can be extended to polygonal elastic cases. Panagiotopoulos
pointed out in (1988 p. 85) that while the ‘Smooth Mechanics’ is based on the
notion of the classical potential, the ‘Nonsmooth Mechanics’ is concerned with the
nonsmooth and/or nonfinite convex or nonconvex superpotentials.

The generalization of the classical potential law to nonsmooth but convex po-
tentials named superpotential was introduced by Moreau (1963, 1968) by using
the tools of the convex analysis. The convexity of an energy function implies the
monotonicity of the concerning stress-strain relation. Variational principles related
to such kind of problems have the form of variational inequalities. In order to
overcome the constraint of monotonicity, the notion of nonconvex superpotential
was introduced by Panagiotopoulos (1981) by using the generalized gradient of
Clarke (1975) and the results of Rockafellar (1970) leading to the hemivariational
inequalities in mechanical applications. In his pioneer book (1985) Panagioto-
poulos laid down the foundations of the ‘Nonsmooth Mechanics’ and established
the substationarity laws of mechanics. So he obtained the generalized substation-
arity principles for nonconvex potentials (1985, 1988). Further generalizations of
hemivariational inequalities and applications are given by Moreau and Panagioto-
poulos (1988), and later Naniewicz and Panagiotopoulos (1995).

The term of nonsmoothness in sense of the definitions of Panagiotopoulos (1985)
is based on the Lipschitzian property of functions. Simply saying, for a break type
discontinuity of a functionf(x) at x, the Lipschitzian condition atx fulfils, while
for a jump type discontinuity it does not. The existence of both the subdifferential
∂f (x) and the generalized gradient∂̄f (x) requires the Lipschitzian property of the
function atx. A point xo is called a substationarity point off (x) if it is a solution
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of the multivalued equation named inclusion

0 ∈ ∂̄f (x) (27)

where the generalized gradient∂̄f (x) of Clarke is a set being never empty iff (x) is
Lipschitzian atx. If f (x) is convex then̄∂f (x) coincides with the subdifferential:
∂̄f (x) = {gradf (x)}, moreover if it is also continuously differentiable atx, then
∂̄f (x) = {gradf (x)}.

If the material is reversible but the strain energy functionalW(ε) is nonsmooth,
the conservative stresses can be obtained from the inclusion

σ (ε) ∈ ∂W(ε) (28)

named superpotential law, introduced by Moreau in (1968). According to Panagioto-
poulos (1985)∂W(ε) is the subdifferential of the superpotentialW(ε), a multival-
ued mapping as the generalization of the classical potential law, see Panagioto-
poulos (1981).

Further generalization given by Panagiotopoulos in 1981 aimed to extend the
potential law to nonmonotone material behaviour. If the material has a nonmono-
tone constitutive law but the material is reversible, the nonconvex superpotential
law

σ (ε) ∈ ∂̄W(ε) (29)

is valid, by using the generalized gradient of Clarke. In this way, a wide range of
decreasing and even a saw-tooth form material behaviour can be dealt with.

According to Panagiotopoulos (1988), the classical linear elasticity laws can
be replaced by nonlinear elasticity lawsσ (ε) = ∂W(ε)/∂ε or more generally,
by the monotone nonsmooth lawσ (ε) ∈ ∂W(ε), and even by the nonmonotone
nonsmooth lawσ (ε) ∈ ∂̄W(ε), if the material is reversible.

In his basic works, Panagiotopoulos deals also with the potential law of dissip-
ative mechanical systems in (1983, 1985, 1988). From the view of the nonsmooth-
ness and nonconvexity on thermodynamic bases, he obtain mainly the same sta-
tionarity conclusion as mentioned above. By introducing a general nonsmooth
thermodynamic potential of dissipation and applying the superpotential law of
Clarke, he gets to the generalization of the hypothesis of normal dissipation. He
states that in the case of dissipation or unloading, an incremental analysis has to be
applied. He deals generally with strongly nonmonotone and nonsmooth cases like
saw-tooth behaviour and damage, but in aspect first of all the equilibrium and not
the stability.

On the basis of the results of Panagiotopoulos, we can extend the concept of
tangent modulus to the nonsmooth cases, including the combination of plastic and
locking behaviour, the so-called generalized conditional joints as well.
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3.2. GENERALIZED CONDITIONAL JOINTS AS SUBDIFFERENTIAL

CONSTITUTIVE MODELS

The concept of the nonsmooth tangent modulus can be related to the so-called
locking materials, according to Suquet (1985). The initial stiffness of this mater-
ials during a loading process increases and finally, the material can become even
perfectly rigid seen in Figure 2a. In Figure 2b the perfectly locking behaviour is
illustrated. In spite of the fact that this type of materials are reversible, they can
be handled similarly to the irreversible problems. The locking behaviour can be
combined with the plastic behaviour seen in Figure 2c, yielding to the family of
the so-calledconditional jointsdescribed first by Kaliszky (1975). Further gener-
alization of the conditional joints by considering them as subdifferential material
property was given by Kurutz (1985, 1987), namely, by considering the locking
behaviour as the dual version of the reversible plastic characteristics. Stability
conclusions due to nonsmooth behaviour has been analysed also by Kurutz (1991,
1993, 1994, 1996).

In Figure 2d the saw-tooth type stress-strain diagram of some recently used
materials and structures can be seen. Composite, fibre-reinforced, laminated or
rock-like materials, adhesive connections, moreover, the interaction of concrete
with the steel reinforcement are characterised by this type of functions.

The typical nonsmooth material behaviour seen in Figure 2c and 2d can be
considered as generalized conditional joints governed by subsequent locking and
plastic yield conditions, respectively, specifying the convex sets in the function
space R6

Ki(xk) = {εij (xk)|gi(εij (xk)) 6 0} xk ∈ V, εij ∈ R6 i = 1,2, . . . , m
(30)

and

Kc
j (xk) = {σij (xk)|fj (σij (xk)) 6 0} xk ∈ V, σij ∈ R6 j = 1,2, . . . , n

(31)

represented by six-dimensional convex hypersurfaces illustrated symbolically in
Figure 3. In the figure, three surfaces can be seen, representing a subsequent elastic-
plastic-locking-plastic behaviour seen in Figure 2c. In (30) and (31)i andj are the
number of subsequent locking and yield conditions, respectively.

To extend the constitutive law of the generalized conditional joints to R6, the
associated indicator functionals of the convex setsK andKc are specified as

JK(εij ) =
{
8g(εij ) = 0, for εij ∈ K
∞ for εij /∈ K (32)

and

J cK(σij ) =
{
3f (σij ) = 0, for σij ∈ Kc

∞ for σij /∈ Kc
(33)
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respectively, representing the normality or orthogonality law, where8 > 0 and
3 > 0 are the multipliers of the locking stress and plastic strain increments, re-
spectively. On the other hand, these sign-dependent variables can be considered
as the Lagrange-multipliers of the sign-dependent locking and yield conditions
g(εij ) 6 0 and f (σij ) 6 0, respectively.

By means of the indicators, the strain and stress energy density functionals can
be constructed respectively as

W(εij ) = W0(εij )+ JK(εij ) and Wc(σij ) = Wc
0(σij )+ J cK(σij )

(34)

Thus, the multivalued constitutive law representing substationarity yields the in-
clusions

εij ∈ ∂Wc(σij ) ≡ ∂Wc
0(σij )+ ∂J cK(σij )

≡ ∂Wc
0(σij )+

{
3∂f (σij ) = 3fij , for σij ∈ Kc

0 for σij /∈ Kc
(35)

σij ∈ ∂W(εij ) ≡ ∂W0 (εij )+ ∂JK(εij )

≡ ∂W0 (εij )+
{
8∂g(εij ) = 8gij , for εij ∈ K
0 for εij /∈ K (36)

for plastification and locking process, wherefij andgij are the gradients of the
yield and locking convex hypersurfaces, respectively.

The modified variational problem extended to the sign-dependent variables can
symbolically be illustrated by means of the Hu-Washizu principle seen in Fig-
ure 4. as a surface to be extremized under the inequality subsidiary conditions
g(εij ) 6 0 and f (σij ) 6 0. This leads to a constrained extremum problem,
where the domain of the possible solutions is restricted by the inequality side con-
ditions. Consequently, the stationarity condition leads to variational inequalities.
The numerical solution of the load history analysis can be solved as mathematical
programming problem.

3.3. ONE-DIMENSIONAL NONSMOOTH TANGENT MODULI

By applying the concept of tangentially equivalent elastic structure of Bazant and
Cedolin (1991, p. 635), the responses of an inelastic problem can be solved in small
loading steps by a series of quasielastic analysis, taking the inelastic constitutive
law as a thermodynamic equation of state into account. Thus, for a small stepdε,
the increment of the strain energy can be considered elastic, so the strain energy
W(ε) at ε can as the potential function of the stressesσ (ε) be considered, that is,
the classical potential law can be applied. This principle can be extended to the
nonsmooth cases, to the superpotential law, as well.
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By extending the tangent modulus to the unloading, too, the following stress-
strain function including the casedε = 0 is considered

σ (ε) =
{
σ0(ε) = k0(ε)(ε − ε0(ε)) if dε 6 0

σt(ε) = kt(ε)(ε − εt (ε)) if dε > 0
(37)

in which the functionσ0(ε) concerns both the elastic-plastic or elastic-plastic-
damage unloading, while the functionσt(ε) belongs to loading only, seen in Fig-
ure 5a. Note that functionσt(ε) represents Hill’s linear comparison solid of the
original nonlinear material. Herekt (ε) and k0(ε) are the loading and unloading
moduli related to the linear functionsσt(ε) and σ0(ε) at ε, respectively. Strain
valuesεt (ε) and ε0(ε) are the intersections of the straight linesσt(ε) andσ0(ε)

with the axisε, respectively. As we can see in Figure 5a, all these values are
continuously changing in term ofε, but at a fixed strain valueε, they are constant,
that is

σ (ε) =
{
k0(ε − ε0) if dε 6 0

kt(ε − εt ) if dε > 0
(38)

Consequently, for obtaining the tangent modulus at any fixedε, for the nonsmooth
relation (38), subdifferentiation is applied

K̄t (ε) ≡ ∂̄σ (ε) =


k0 if dε < 0

[kt , k0] if dε = 0

kt if dε > 0

(39)

yielding the nonsmooth tangent modulus seen in Figure 2b, as a multivalued func-
tion by forming an interval of[kt , k0] at the conditiondε = 0. Herek0 is the initial
elastic modulus andkt = kt (ε) is the actual tangent of functionσ (ε) Thus, the
actual occurring stiffnessKt(ε) is the element of the set̄Kt(ε) that isKt(ε) ∈
K̄t (ε).

However, the actual tangentkt = kt (ε) is changing with changingε which
makes the solution difficult. That is why, in certain problems, polygonal approx-
imation seems to be reasonable. Moreover, some materials show originally poly-
gonal characteristics. In this case, the solution gives directly the correct results, of
course. Figure 6a shows a polygonal material function. Here we consider break
type functions without jumps.

Let each segmenti of the polygonal material law in Figure 6a be specified by the
relating moduluskit as the constant slope of segmenti, and by the strain constant
εit as the intersection of segmenti and the axisε. Thus, at the break pointε = εi,
the material functionσ (ε) can be written in the form

σ (ε)i =
{
ki−1
t (ε − εi−1

t ) if dε 6 0

kit (ε − εit ) if dε > 0
(40)
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which is similar to the function (38) since the segment preceding the break point
ε = εi can as unloading path be considered. Practically, during a loading process,
casedε < 0 belongs to unloading only. If the material is reversible, the unloading
is represented in (40) by the moduluski−1

t , while for irreversible materialski−1
t = 0

for dε < 0.
The nonsmooth tangent modulus̄Kt(ε)i for ε = εi, seen in Figure 6b can be

obtained by subdifferentiating the functionσ (ε)i atε = εi, relating to both loading
and unloading

K̄t (ε)
i ≡ ∂̄(σ (ε)i) =


ki−1
t if dε < 0

[kit , ki−1
t ] if dε = 0

kit if dε > 0

(41)

The concept of the nonsmooth tangent modulus of polygonal material behaviour
can be extended to thestrain softening, namely, todamageproblems, too. As a
typical damage property, in the case of active damage loading, the loading moduli
kit are negative. In contrast to the elastic-plastic unloading, in damaging cases, the
unloading and reloading moduli are given individually. Consider a polygonal func-
tion of an elastic-plastic-damaging material seen in Figure 7. Also in the case of
damaging materials, the unloading paths are linear, but in contrast to the plastic
unloading, unloading occurs with different elastic moduli. Thus, the unloading
moduli kut are changing depending on the actual strains.

Consider now the lump like material nonsmoothness seen in Figure 2d and
in Figure 8. Jump like material characteristics can occur in both strain softening
or strain hardening phases, like in composite materials or locking behaviour, re-
spectively. Figure 8 represents the behaviour of the perfectly rigid-plastic material.
In this case, the unloading and reloading take place in a perfectly rigid manner
under the conditiondε = 0, manifested in a jump. The material behaviour is
characterized by the inclusion

σ (ε) ∈ σ̄ (ε) =


σ2 if dε < 0

[σ2, σ1] if dε = 0

σ1 if dε > 0

(42)

according which, independently ofε, the actual stresses are the elements of the set
of stresses related equally to loading, unloading and reloading.

For obtaining the tangent modulus, this function needs to be subdifferentiated.
However, since this function has jumps at anydε = 0, the Lipschitz condition
does not fulfil, so nor the subdifferential of Moreau, nor the generalized gradient
of Clarke exists. Still, if we want to obtain the tangent modulus in such kind of
Heaviside type material functions, a distributional derivative is applied. Thus the
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generalized nonsmooth tangent modulus yields

K̄t (ε) ≡ ∂̄(σ̄ (ε)) =
{

0 if dε 6= 0

±(σ1− σ2)δ(dε) if dε = 0
(43)

whereδ(dε) is the Dirac impulse, see Keener (1988). For the conditiondε = 0,
the tangent modulus forms an interval of indefinite length, namely, in the case of
loading (unloading) it tends to the positive (negative) infinite.

Naturally, an arbitrary jump[σi−1, σi] in the material function can equally hap-
pen for a reversible or an irreversible material at any strain value. Consider now
a locking material with a jumpσi−1, σi, both preceded and followed by elastic
behaviour seen in Figure 2c. The nonsmooth tangent modulus atε then reads

K̄t (ε) ≡ ∂̄(σ̄ (ε)) =


ki−1
t if dε < 0

±(σi − σi−1)δ(dε) if dε = 0

kit if dε > 0

(44)

since the unloading paths are equal to the loading ones.
Construct now the nonsmooth tangent modulus related to a discrete structural

model.

4. The nonsmooth structural tangent modulus

Let us consider isothermal deformations of a time-independent solid body subject
to a quasi-static conservative loading program. Any material property is assumed
to vary smoothly in the geometric space, while the material function in itself is
nonsmooth in the function space.

By supposing that the body in the initial configuration occupies a spatial domain
�0 and is bounded by the smooth surface00, let us consider that in the volume�0

the body forcesFi , and on a nonzero part0p0 of the surface00 the surface tractions
Pi, while on the complementary part0u0, the displacementsui are specified. Let us
assume a scalar loading parameterλ to be varied continuously and infinitely slowly
in time.

Let us consider Lagrangian description whereSij is the second Piola–Kirchhoff
stress tensor andEij is the Lagrange–Green strain tensor.

Generally, any nonlinear structural analyses are based on theprinciple of in-
cremental virtual workrepresenting equilibrium condition of a given state of the
load history analysis. The equilibrium condition can be extended tononsmooth
materialsas an inclusion

0 ∈ δ1L̄ =
∫
�0

(S̄ij + dS̄ij ) δ1Eij d�0−
∫
�0

(λFi0+ dλFi0) δ1ui d�0

−
∫
0p0

(λPi0+ dλPi0) δ1ui d00, (45)
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where the term1 represents the total,d the first order increments andδ the vari-
ation. The nonlinear and nonsmooth material is specified by the nonsmooth func-
tion S̄ij (Emn) obtained by the inclusion of the superpotential law

S̄ij (Emn) ∈ ∂̄ijW(Emn), (46)

while the increments of the nonsmooth stresses are specified by

dS̄ij (Emn) ∈ ∂̄kl S̄ij (Emn)dEkl ≡ ∂̄kl(∂̄ijW(Emn))dEkl ≡ K̄ijkl(Emn)dEkl,
(47)

whereW(Emn) is the nonsmooth nonconvex superpotential,K̄ijkl(Emn) is the non-
smooth multivalued material tangent modulus tensor.

The Lagrange–Green strain tensor issmoothin term of the displacement gradi-
entsui,j

Eij = 1

2
(ui,j + uj,i + uk,iuk,j ) (48)

in which linear and nonlinear parts can be distinguished. In the case of large dis-
placement gradients, that isui,j >> 0, large or finite strains, while in the case
of small displacement gradients, ifui,j << 1, small or infinitesimal strains are
distinguished.

In (45) we need the total increment of large strains related to then-th equilib-
rium configuration as

1Eij = dEij + d2Eij = 1

2
(1ui,j +1uj,i + unk,i 1uk,j

+unk,j 1uk,i +1uk,i1uk,j , (49)

containing the fist and second order increments of the large strains atuni .
In (45) the first variation of the total increment of the large strains is needed,

too, as

δ1Eij = δdEij + δd2Eij = 1

2
(δ1ui,j + δ1uj,i + unk,i δ1uk,j

+unk,j δ1uk,i +1uk,i δ1uk,j + δ1uk,i 1uk,j ) (50)

where the variation of the first and second increments can be distinguished. The
increments and variations of the displacement gradientsui,j can be analyzed after
the discretization only.

The displacement functionui for a single finite element within the bodycan be
expressed in term of both geometric and functional coordinatesX andq, respect-
ively, as

u
(3)
= u(X

(3)
,q) =

 u1(X,q)
u2(X,q)
u3(X,q)

 =
 u1(X1, X2, X3; q1, q2, . . . , qr)

u2(X1, X2, X3; q1, q2, . . . , qr)

u3(X1, X2, X3; q1, q2, . . . , qr)

 (51)
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whereX are the (local) coordinates of the discretizedgeometric space(the body
in itself), andq are the coordinates of the discretizedfunction space, whiler is the
number of generalized coordinates (finite degree of freedom) of the elements.

Here we distinguish small/large displacements, functionsu to be linear/nonlinear
in q, respectively. Practically, in the case of large displacements, parametersq
contain rotational elements, that is, trigonometrical relations inu, in term of q.
For small displacements, functionsu are linear inq, thus, the variablesX andq in
(51) can be separated by the linear combination

ui =
m∑
k=1

qki N
k
i (X), (52)

whereNk
i (X) are the interpolation or shape functions corresponding to the nodal

points of numbermwithin the element. Expression (52) leads to the classical basic
expression of the linear finite element displacement method

u(X
(3)
,q) = N(X)

(3,r)
q
(r)
, (53)

where matrixN(X) contains the shape functionsNk
i (X) of the classical linear FEM

approach.
In the case of nonlinear displacements, when the direct separation (52) cannot

be applied, incrementally linear analysis is needed, that is, the linear combination
(53) can be applied to the increments of then-th configuration only. By considering
the increments of the large displacements as1u = du + d2u, for the incremental
version of (53) we have

d u
(3)
= ∂u(X,q)

∂qj

∣∣∣∣
n

dqj = Hn

(3,r)
d q
(r)
, (54)

moreover, the nonlinearity of the displacements is represented by

d2 u
(3)
= 1

2

∂2u(X,q)
∂qj∂qk

∣∣∣∣
n

dqj dqk = 1

2
dqT
(r)

Wn
(r,3,r)

d q
(r)
, (55)

which are the first and second order increments of the large displacements, respect-
ively, related to then-th configuration. MatrixHn has 3×r elements, while matrix
Wn is three dimensional of measurer×3×r. At a certain load level the increment-
ally linear relation (54) can as the basic relation of the nonlinear finite element
displacement method be considered, while matrixWn represents the nonlinear
geometry.

The variation of the increments of large displacements are as follows

δ1u = Hn δdq+ dqTWn δdq (56)
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where the variation of the first and second increments can be distinguished as
δdu = Hn δdq and δd2u = dqTWn δdq. After discretizing the displacements,
the matrix version of the Green-Lagrange strains can be obtained in the form

E
(6)
= E(u)

(6)
= A

(6,3)
u
(3)
+1

2
u
(3)

T G
(3,6,3)

u
(3)

(57)

where E are in vector arrangement asET = [E11 E22 E33 2E12 2E13 2E23],
moreover,A andG are differential operators of the geometric spaceX, concerning
the displacement gradients represented by the linear termAu in the small (infin-
itesimal) strains, and, by the nonlinear term 1/2 uT G u in the case of large (finite)
strains. MatrixG is three-dimensional, consisting of six layers of sub-matrices of
measure 6×3.

By considering the discrete versions of the increments and variations of large
strains in term of large displacements, we can obtain

1E = (AHn + uTnGHn) dq + 1/2dqT (AWn + uTnGWn + HT
nGHn)dq,

(58)

in which the first and second increments can be distinguished asdE = (AHn +
uTnGHn)dq + 1/2dqT (AWn + uTnGWn)dq andd2E ∼= 1/2dqTHT

nGHndq where
the latter is obtained by eliminating the higher than second order terms in dq.
Moreover, the variation of increments are

δ1E = (AH n + uTnGHn) δdq+ dqT (AWn + uTnGWn + HT
nGHn) δdq,

(59)

in which δdE = (AHn + uTnGHn) δdq + dqT (AWn + uTnGWn)δdq andδd2E ∼=
dqTHT

nGHn δdq. These results are valid to nonlinear strains and nonlinear dis-
placements. By applying linear strains with nonlinear displacements, or, conversely,
nonlinear strains with linear displacements, moreover both linear strains and dis-
placements, the above increments and variations can be simplified. More details
can be seen in Kurutz (1999).

By considering the discrete versions of the state variable functions, the incre-
mental virtual work (45) related to nonsmooth materials, for a single element of
the assemblage can be obtained in matrix form as

δ1L̄e ≡
∫
�e0

(S̄T +1ET D̄t ) δ1E d�0−
∫
�e0

(λFT0 + dλFT0 )δ1u d�0

−
∫
0e
(λPT0 + dλPT0 ) δ1u d00 (60)

whereD̄t contains the nonsmooth material tangent moduli. Due to the nonlinearity
of the strains and displacements, the expression (60) is fully nonlinear, thus, further
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concepts of linearization are necessary, see Kurutz (1999). The linearized and ho-
mogenized form of the incremental virtual work in the case of nonsmooth material
with large strains and large displacements yields a set

δ1L̄e ≡ dqT
{∫

�0

HT
n (A

T +GTBun) D̄t (uTnG+ A)Hn d�0

+
∫
�0

S̄−T (AWn + uTnGWn + HT
nGHn) d�0

−
∫
�0

λFT0 Wn d�0−
∫
00

λPT0 Wn d00

}
δdq

−dλ
{∫

�e0

FT0 Hn d�0+
∫
0p0

PT0 Nn d00

}
δdq (61)

related to a single element of the discretized body, where

k̄nt ≡
∫
�e0

HT
n (A

T +GT un) D̄n
t (u

T
nG+ A)Hn d�0

+
∫
�e0

S̄Tn (AWn + uTnGWn + HT
nGHn) d�0

−
∫
�e0

λFT0 Wn d�0−
∫
0e0

λPT0 Wn d00 (62)

is themultivalued elementary tangent stiffness matrixof nonsmooth nonlinear case,
related to then-th equilibrium configuration. By extending the principle of incre-
mental virtual work to the total element assemblage (after some coordinate trans-
formation and other operations not detailed here), the incremental finite element
equilibrium relation of the entire structure can be obtained as an inclusion

0 ∈ dqT K̄ n
t δdq− dRT

n δdq = (dqT K̄ n
t − dRT

n ) δdq, (63)

whereK̄T
n is thenonsmooth structural tangent stiffness matrixwhich can basic-

ally be divided into three parts. The first part is the so-callednonsmooth material
tangent stiffness

k̄mat
tang=

∫
�e0

HT
n (A

T +GT un) D̄n
t (u

T
nG+ A)Hn d�0 (64)

containing the nonsmooth material tangent moduli including unloading, moreover,
linear and nonlinear strains. The second part, namednonsmooth geometric stiffness
matrix

k̄stress
geom=

∫
�e0

S̄Tn (AWn + uTnGWn + HT
nGHn) d�0 (65)
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represents the actual nonsmooth stresses and the geometric nonlinearities including
both nonlinear strains and displacements. The third part, namedloading stiffness
matrix

k load
geom=

∫
�e0

λFT0 Wn d�0+
∫
0e0

λPT0 Wn d00 (66)

is associated with displacement nonlinearity, being smooth function.
The incremental analysis is based on thetangent stiffness matrix.By using the

detailed forms of the discrete strains and displacements, different forms of the
tangent stiffness matrix can be obtained. In the following tablet the main versions
of the nonsmooth tangent stiffness matrix modified by the different linearization
and approximation concepts are summarized.

Nonsmooth Elementary Tangent Stiffness

Nonsmooth Large strains Small strains

material

Large
∫
�e0

HTn (A
T +GT un)D̄nt (u

T
nG+ A)Hnd�0

∫
�e0

HTn AT D̄nt AHnd�0

displacements + ∫�e0 S̄Tn (AWn + uTnGWn + HTnGHn)d�0 +
∫
�e0

S̄Tn AWnd�0

− ∫�e0 λFT0 Wnd�0 −
∫
0e0
λPT0 Wnd00 − ∫�e0 λFT0 Wnd�0

− ∫00
λPT0 Wnd00

Small
∫
�e0

NT (AT +GT un)D̄nt (u
T
nG+ A)Nd�0

∫
�e0

NT AT D̄nt ANd�0

displacements + ∫�e0 S̄Tn (N
TGN)d�0

5. Application of the nonsmooth tangent modulus

Figure 9a shows the classical structural model of stable-symmetric bifurcation
problen, a rigid bar supported by a rotational spring. The momentM in the spring
represents the stress, while the rotationϑ represents the strain variable. Here the
spring is supposed to be nonlinear and nonsmooth, specified by the polygonal ma-
terial functionM̄(ϑ) seen in Figure 9b. According to Kurutz (1993, 1994, 1996)
a nonlinear function of an elastic material can be approximated by a polygonal
composed by the segments

M(q)j = cj (q − ϑj) 0< cj <∞ j = 1,2, . . . , n (67)

related to thej-th segment of the material polygonal. Herecj is the slope of thej-th
segment, andϑj is the intersection of thej-th segment and the strain axis, seen in
Figure 9b.

The functional finitization needs to introduce the generalized coordinates. In
these simple case of one degree of kinematical freedom, the vectorq has a single
elementq = ϑ , the rotation at the support hinge.
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Figure 9a shows the applied one parameter vertical loadF = λF0 whereF0 =
1. Due to the single vertical load, the displacement function is represented by
the vertical displacement of the top of the cantilever, which, by assuming perfect
nonlinear displacements, yieldsu = l(1− cosq). The nonlinear strain function is
ϑ(u) = arccos(1− u/l) while ϑ(u(q)) = arccos(1− u/l) = q.

In this way, by considering nonlinear nonsmooth damaging material

M(q)j = cj (q − ϑj)0< cj <∞ j = 1,2, . . . , n (68)

represented by the polygonal seen in Figure 10a as the lower envelope of the func-
tions in (68), due to the damaging characteristics. The nonsmooth equilibrium path
forms the lower envelope of the component functions again, that is

λ̄(q) = min


1

F0l


cj (q−ϑj )

sin q for 0< cj <∞[
Mj,j−1

sin ϑj
,
Mj,j+1

sin ϑj

]
for cj = ∞ j = 1,2, . . . , n

Mj

sin q for cj = 0


(69)

illustrated in Figure 10b for the right hand side deflections 06 q 6 π . As it is
concluded in Kurutz (1993, 1994, 1996), for softening material phases the lower
envelope, for hardening material phases the upper envelope yields the equilibrium
path.

For qualifying the stability of the equilibrium paths, we need the second subdif-
ferential of the nonsmooth superpotential. The nonsmooth function of the structural
tangent stiffness̄K(q) are seen in Figure 10c. For differentiable points the tangent
stiffness consists of a single value, while for subdifferentiable points it forms an
interval. The jump like function of the associatedmultivalued tangent stiffness
matrix is as follows:

K̄(q) =



cj

(
1− q−ϑj

tgq

)
for 0< cj <∞[

cj

(
1− q−ϑj

tgϑj,j+1

)
, cj+1

(
1− q−ϑj+1

tgIj,j+1

)]
for 0< cj <∞
andq = ϑj+1

positive intervals for cj = ∞
Mj

tgq for cj = 0

(70)

containing intervals associated with the break points of the material polygonal.
In the one dimensional case, the stability of equilibrium at any state represented

by the points of the equilibrium paths seen in Figure 10b, can be qualified by a
simple sign control of the related functions of the tangent stiffness. In order to find
the critical state and critical load, we consider the inclusion

0 ∈ detK̄(q) (71)
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knowing that the determinant of an interval matrix forms an interval, too. In this
one-dimensional case, this matrix has a single element which is equal to its determ-
inant in itself. Thus, the critical states can be seen in Figure 10b, as well.

Figure 11a shows a model where the phenomenon of unloading can also be
demonstrated. The structure has the total lengthl consisting of two rigid elements
of lengthαl and(1− α)l with the ratioξ = α/(1− α) specifying the position of
the middle joint. This system has also one degree of kinematical freedom. Let the
parameterq be the angle of rotationq = ϑA of the support jointA.

Let the elastic-plastic-damaging behaviour of the joints be represented by the
material functionM(ϑ) seen in Figure 11b, prescribed uniformly for the three
springs. In contrast to the plastic unloading, in the damage zone the unloading
moduli can be specified individually.

The displacement functionu(q) and the strain functionε(u) are nonlinear, since

u(q) =
 uBxuBy
uCy

 =
 lα sinq

lα(1− cosq)
lα(1− cosq)+ l(1− α)(1− cos(arcsin(ξ sinq)))

 =
 u1(q)

u2(q)

u3(q)

 (72)

and

ε(u) =
 ϑAϑB
ϑC

 =
 arcsin(u1/αl)

arcsin(u1/αl)+ arcsin(u1/((1− α)l)
arcsin(u1/((1− α)l)

 (73)

moreover

ε(u(q)) =
 ϑAϑB
ϑC

 =
 q

q + arcsin(ξ sinq)
arcsin(ξ sinq)

 (74)

Let us consider the case ofα = 1/3, that isξ = 0.5, namely, if the hingeB is in
the lower third of the total heightl. In Figure 12a the structural material behaviour
is illustrated, as the resultant of the three springs, reduced to the support hinge A,
due to the choiceq = ϑA.

Figure 12a shows the nonsmooth function of the structural material behaviour
resulted by the simultaneously different material phases of each jointsA, B andD.
The simultaneity of the different material phases depends on the actual strains at the
joints controlled by the actual rotationsε(q), namely, the compatibility transform-
ations (74). As a consequence of the softening behaviour, the structural moment
function forms the lower envelope of the component functions in Figure 12a.

The concerning nonsmooth equilibrium pathsλ̄(q) of the structure are seen in
Figure 12b. For the sake of simplicity this time we follow the behaviour of the
structure in the right-hand side interval 06 q 6 π again. We can observe that
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certain paths can not be realized since there is no such coincidence of the material
phases of the three springs. The equilibrium pathλ̄(q) forms the lower envelope of
the realizedcomponent functions in Figure 12b. AtϑA = π/2 of the jointA, joint
C starts to be unloaded causing certain energy release.

In Figure 12c the multivalued function of the structural tangent stiffness is illus-
trated. Due to the gradual strain softening, the tangent stiffness tends to be negative
indicating instabilities.

6. Conclusions

Nonsmooth material and structural tangent moduli are in the focus of this paper.
After a historical review, where a century long development of the tangent modulus
was detailed, we introduced the nonsmooth version of it, based on the pioneer work
of P.D. Panagiotopoulos.

As a conclusion, the tangent modulus containing both material loading and
unloading is always multivalued. The nonsmooth tangent modulus related to the
break points of a material polygon yields intervals of finite length, while related to
the jumps of a material function leads intervals of infinite length concerning to the
Dirac-impulse. The nonsmooth tangent modulus of polygonal material behaviour
can be applied to the cases of strain softening and damage too.

The concept of nonsmooth material tangent modulus can be extended to the
whole structure, leading to nonsmooth structural tangent modulus. The general-
ized nonsmooth structural tangent modulus is multivalued. In the case of uniaxial
material behaviour, it forms a diagonal interval matrix. For a break (jump) type
material discontinuity, the intervals are finite (infinite).

One-dimensional illustrations for simple discrete structures with uniaxial ma-
terial laws helped to prove the advantage of the nonsmooth material and structural
tangent modulus.
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